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OUTLINE

e Motivation

e  Multi-Scale Continuum Model




Reasons for Upscaling Pore-Scale to
Continuum Scale

e Validate continuum model
— Does simple volume averaging work?

— Obtain continuum constitutive relations from pore-
scale model
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Multi-Scale, Multicomponent Reactive Transport
Equations

Primary (bulk) domain:
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Pore-Scale Models

* Pore-Network Model
— Abstraction of pore geometry: pore-scale heterogeneity unconstrained

— Does not discretize pore space: pore-scale gradients not represented

— Can handle larger domains compared to LBM







LBM METHOD OF SOLUTION

e Explicit Finite Difference
— Streaming fi(x+eot,t+0t)=f i(x, 1)




LATTICE BOLTZMANN METHOD FOR
MULTI-COMPONENT REACTIVE TRANSPORT

e Evolution Equation for Particle Distribution Function
8., (X, )-8, (C;, u)

g (X+e. 0 t+0r)=g,(X, 1)~

‘L’aq

* Pore Scale Convection-Diffusion-Reaction Equation




Moving Boundary Problem:
Dissolution and Precipitation in LBM

e Treat solid phase as continuum
— More than one mineral may coexist at a single node
— Solid concentration calculated using continuum-based equation:

b (1, t+0)=¢ (r,,)+V a I (1., 1)




LBM Calculation of Tortuosity

3

Control volum
(REYV)




Fracture-Matrix Interaction
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Example: Structured Porous Medium
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Model Geometry and Continuum Fit Parameters

Table 1: LB geometry and parameters for continuum model.
One lattice unit equations 1.25 x 10~ m.

Property Symbol  Units Bulk Matrix

System Length (L) cm 4 —
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DCM (8.e-10 m%/s)
SCM

ECM

LBM-left
LBM-right

LBM-top

100000

TIME [s]




LBM: log rk =-10

LBM: log rk = -7

DCM (k=1.e-7 mol/cmzls)
SCM (k=1.e-7 mol/cm?/s)
DCM (k=1.e-10 mollcm?/s)
SCM (k=1.e-10 molicm®/s)
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Equivalence of Dual and Single Continuum
Models for a Single Component Stationary-State

e Dual continuum stationary state transport equations:

dCh oCm
i dx

—kab(Cb — eq) + amb‘PmD e




Multicomponent System:
100 bars CO, + Mg + SO, + Calcite —

Dolomite + Gypsum
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LBM: Calciul:
LBM: Dolomite
LBM: Gypsum
SCM: Calcite
SCM: Dolomite

| SCM: Gypsum
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Continuum and LBM Surface Areas

e Continuum Model

— Different surface areas for precipitation and dissolution
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Dolomite: LBM
Gypsum: LBM

Calcite: a%; (4o/d°c)
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Conclusions

e Multicomponent Lattice Boltzmann model developed with
same chemistry as in continuum models with heterogeneous
mineral reactions incorporated as boundary conditions at
mineral surface.




Conclusions [Continued]

e Main difficulty in applying LBM is quantifying pore-
scale geometry, mineral distribution and associated




Future Work

e Validate LBM and apply to realistic pore-scale geometries.

e Investigate upscaling pore-scale sorption processes: can sorption
“Kkinetics” be explained by diffusion processes coupled to fast
reaction Kinetics in complex pore geometry?




